On Maxima of Takagi-van der Waerden Functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on Van Der Waerden Numbers and Some Related Functions

For positive integers s and k1, k2, . . . , ks, let w(k1, k2, . . . , ks) be the minimum integer n such that any s-coloring {1, 2, . . . , n} → {1, 2, . . . , s} admits a ki-term arithmetic progression of color i for some i, 1 ≤ i ≤ s. In the case when k1 = k2 = · · · = ks = k we simply write w(k; s). That such a minimum integer exists follows from van der Waerden’s theorem on arithmetic progre...

متن کامل

Bounds on some van der Waerden numbers

For positive integers s and k1,k2, . . . ,ks, the van der Waerden number w(k1,k2, . . . ,ks;s) is the minimum integer n such that for every s-coloring of set {1,2, . . . ,n}, with colors 1,2, . . . ,s, there is a ki-term arithmetic progression of color i for some i. We give an asymptotic lower bound for w(k,m;2) for fixed m. We include a table of values of w(k,3;2) that are very close to this l...

متن کامل

On generalized van der Waerden triples

Van der Waerden’s classical theorem on arithmetic progressions states that for any positive integers k and r, there exists a least positive integer, w(k, r), such that any rcoloring of {1, 2, . . . , w(k, r)} must contain a monochromatic k-term arithmetic progression {x, x+d, x+2d, . . . , x+(k−1)d}. We investigate the following generalization of w(3, r). For fixed positive integers a and b wit...

متن کامل

A van der Waerden Variant

The classical van der Waerden Theorem says that for every every finite set S of natural numbers and every k-coloring of the natural numbers, there is a monochromatic set of the form aS+b for some a > 0 and b ≥ 0. I.e., monochromatism is obtained by a dilation followed by a translation. We investigate the effect of reversing the order of dilation and translation. S has the variant van der Waerde...

متن کامل

Smooth Interpolation, Hölder Continuity, and the Takagi-van der Waerden Function

1 pi − 2 j+1 > 7pr − 4pr > pr . If r is odd, set nk = ∏r1 pi − 2k+1. Then nk ≡ 3(4) (since 32 ≡ 1(4)). But no pi divides nk for 1 ≤ i ≤ r , so the integer nk has some prime factor qk ≡ 3(4) with qk > pr . If j = k, say j > k, the assumption that qk also divides n j leads to the same contradiction as earlier: since nk − n j = 2 j+1 − 2k+1 = 2k+1(2 j−k − 1), we have qk | 2 j−k − 1 and hence qk < ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1984

ISSN: 0002-9939

DOI: 10.2307/2045305